Heterocyclic Syntheses with the Co-ordinated Ligand CN_2^{2-} ; Reactions of Bistrimethylstannyldiazomethane and Trimethylsilyldiazomethane

By M. F. LAPPERT* and J. S. POLAND

(The Chemical Laboratory, University of Sussex, Brighton, BN1 9QJ)

RECENTLY we reported the synthesis of the volatile organometallic diazomethanes Me_3MCHN_2 (M = Sn or Si), and showed that the tin compound, acting presumably as a 1,3dipole, formed an adduct with phenyl isocyanate.¹ Similarly the silicon analogue reacts with acrylonitrile.²

We now present preliminary results (see Table) of a more extensive study of 1,3-dipolar reactions. Their significance is in that they provide a general synthesis for a variety of five-membered ring heterocycles, and also lead to a revision of the structure of the stannyldiazomethane.

The stannyldiazomethane, b.p. $64-67^{\circ}/0.1$ mm., v_{max} 2000 cm.⁻¹ is $(Me_3Sn)_2CN_2$, while the silicon compound, b.p. 94—96°/760 mm., ν_{max} 2070 cm.⁻¹, is confirmed as Me₃SiCHN₂. The evidence, apart from analytical and spectral data, is as follows. (i) The products of reactions with 1,3-dipolarophiles AB usually (see Table) have molecular formulae (analysis and mass spectra) (Me₃Sn)₂CN₂,AB. (ii) The mass balance in these reactions and in another $[2\mathrm{Me_3SnNMe_2} + \mathrm{CH_2N_2} \rightarrow (\mathrm{Me_3Sn})_2\mathrm{CN_2} + 2\mathrm{Me_2NH}] \text{ is con-}$ sistent with the formula (Me₃Sn)₂CN₂ (iii) This formula also agrees with the volume of gas $(N_2 + CH_4 + C_2H_6 + C_3H_8)$ and its composition (g.l.c.) from hydrolysis1 of the stannyldiazomethane.

The new heterocyclic syntheses comprise the use of the following consecutive operations: conversion of CH2N2 into (Me₃Sn)₂CN₂, reaction of the latter with a 1,3-dipolarophile

AB (see Table), and protodestannylation [it is found that the adducts (Me₃Sn)₂CN₂,AB are readily protodestannylated to give the parent heterocycles H₂CN₂,AB in 5M-HCl]. For example, structures (I) and (II) are suggested for the adducts of (Me₃Sn)₂CN₂ and Me₃SiCHN₂ with MeO₂C·C:C·CO₂Me. As for the second step, (Me₃Sn)₂CN₂ is considerably more reactive than CH₂N₂; and in none of the reactions so far examined with the tin compound is loss of nitrogen observed [cf. (Table), CH_2N_2 and Me_3SiCHN_2]. It is possible that for AB = ArCN, there is analogy with Hoberg's observation³ of aluminium alkyl catalysis in the ArCN-CH2N2-AlR3 triazole synthesis; while it was proposed³ that the function of the aluminium compound was to behave as a Lewis acid and thereby to activate the nitrile by co-ordination, it is possible that an organoaluminium diazomethane is initially formed which then reacts with the nitrile.

It is clear (see Table; the new protic and metallic adducts shown were analytically pure) that the reactivity of the CN2²⁻ ligand with respect to its 1,3-dipolar addition reactions is significantly governed by the nature of the groups attached to carbon. With (Me₃Sn)₂CN₂, the dipolar structure (Me₃Sn)₂C-N=N is probably particularly important as it may be stabilised by delocalisation of the negative charge on carbon.

The protodestannylation (cleavage of Sn-C and Sn-N bonds) of compounds such as (I) requires unexpectedly mild conditions, and is a much more ready process than the analogous protodesilylation of compounds such as (II). The ease of breaking Sn-CN₂ bonds is further illustrated by conversion of (Me₃Sn)₂CN₂, by treatment at room temperature with an acidic hydrocarbon HY, e.g. HY = PhC:CH or C_5H_6 , into Me_3SnY .

We thank the United States Army for financial support, through its European Office.

Μ	.p.	5	of	hei	terocycl	es u	vith	yields	in	parentheses
---	-----	---	----	-----	----------	------	------	--------	----	-------------

1,3-Dipolarophile	Diazomethane reagent				
	CH_2N_2	Me ₃ SiCHN ₂	(Me ₃ Sn) ₂ CN ₂		
p-TolN=C=NTol- $pPhNCSCS2PhNCOPhCNMeO2C·C:C·CO2Me$	$\begin{array}{c} 161162^{\circ} \; (33\%) \\ 172 \cdot 5^{a} \\ \text{Loss of } N_{2}^{b} \\ \text{Loss of } N_{2}^{c} \\ \text{No reaction}^{e} \\ 141^{t} \end{array}$	118—119° (19%) Loss of N_2 Loss of N_2 Loss of N_2 No reaction 78—80 (decomp.)	$\begin{array}{c} 132^{\circ} \ (96\%) \\ 124 \\ -125 \ (82\%) \\ 96 \ (80\%) \\ d \\ 120 \\ -125 \ (decomp.) \\ (01\%) \end{array}$		
CH ₂ :CHCN	100 (decomp.) ^g	$54-56(73\%)^{h}$	120 - 125 (decomp.)		
CH ₂ : CMe·CN	(decomp.) ¹	9-10(64%)	60 (decomp.) (61%)		

^a H. v. Pechmann, Ber., 1895, **28**, 860; ^b R. Rotter and E. Schaudy, Monatsh., 1926, **47**, 493; ^c J. C. Sheehan and P. T. Izzo, J. Amer. Chem. Soc., 1948, **70**, 1985; 1949, **71**, 4059; ^d Insoluble, polymeric (?) material obtained; ^e See ref. 3; ^t H. v. Pechmann, Ber., 1899, **32**, 2299; ^g S. M. Gurvich and A. P. Terent'ev, Sbornik Statei Obshchei Khim., Akad. Nauk. S.S.S.R., 1953, **1**, 409; ^h See ref. 2; ¹ D. Gotkis and J. B. Cloke, J. Amer. Chem. Soc., 1934, **56**, 2710.

(Received, December 5th, 1968; Com. 1663.)

¹ M. F. Lappert and J. Lorberth, *Chem. Comm.*, 1967, 836. ² D. Seyferth, A. W. Dow, H. Menzel, and T. C. Flood, *J. Amer. Chem. Soc.*, 1968, 90, 1080.

³ H. Hoberg, Annalen., 1967, 707, 147.